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Information

Welcome to Prague!

Location

All talks will take place in room S4 of the School of Computer Science, Faculty of
Mathematics and Physics, Charles University, located at Malostranská 25, Prague 1.

The building should be open on both mornings, but visitors can also ask to be let in
at the gatehouse.

Directions

The meeting venue is on Malostranské náměstí (Little Quarter Square), below the
Prague Castle, and just steps from the Charles Bridge, which connects across the
river to various tourist destinations like Old Town Square, Josefov, and Wenceslaus
Square. All of these can be reached by foot or by metro or tram.

Trams 12, 20, 22, and 57 (night) stop directly across the square from the building,
and connect to the Malostranská metro station. (The station can also be reached by
foot in about ten minutes, via Tomášská and then Valdštejnská streets.) Tram 22 is
the easiest way to get to the Castle by transit, though the more picturesque way is
to walk up the hill.

Refreshments

A restaurant is located on the first basement level of the workshop building. (Please
note that the restaurant will only be available until 13:00 on Thursday.) Numerous
restaurants, cafés, and pubs are located on and around Malostranské náměstí.

WiFi

Secure WiFi access is available via eduroam, or by accessing the network MS-KONFERENCE

with password Akce-2013.
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Schedule

Thursday Friday

9:30–10:30 Greenberg

10:30–10:45 Break

10:45–11:45 Csima

11:45–13:45 Lunch

13:45–14:45 Vatev

14:45–15:00 Break

15:00–16:00 Soskova

9:00–10:00 Patey

10:00–10:15 Break

10:15–11:15 Kreuzer

11:15–11:30 Break

11:30–12:30 Brattka

12:30–14:30 Lunch

14:30–15:30 Herbert

15:30–15:45 Break

15:45–16:45 Westrick

16:45–17:45 Khan

∗Fokina’s talk, originally scheduled for Thursday, cancelled.
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Abstracts

Probabilistic Computability and Choice

Vasco Brattka
Universität der Bundeswehr München

We study the computational power of randomized computations on infinite objects,
such as real numbers. In particular, we introduce the concept of a Las Vegas com-
putable multi-valued function, which is a function that can be computed on a prob-
abilistic Turing machine that receives a random binary sequence as auxiliary input.
The machine can take advantage of this random sequence, but it always has to pro-
duce a correct result or to stop the computation after finite time if the random advice
is not successful. With positive probability the random advice has to be successful.
We characterize the class of Las Vegas computable functions in the Weihrauch lat-
tice with the help of probabilistic choice principles and Weak Weak Kőnig’s Lemma.
Among other things we prove an Independent Choice Theorem that implies that
Las Vegas computable functions are closed under composition. In a case study we
show that Nash equilibria are Las Vegas computable, while zeros of continuous func-
tions with sign changes cannot be computed on Las Vegas machines. However, we
show that the latter problem admits randomized algorithms with weaker failure
recognition mechanisms. The last mentioned results can be interpreted such that
the Intermediated Value Theorem is reducible to the jump of Weak Weak Kőnig’s
Lemma, but not to Weak Weak Kőnig’s Lemma itself. These examples also demon-
strate that Las Vegas computable functions form a proper superclass of the class of
computable functions and a proper subclass of the class of non-deterministically com-
putable functions. We also study the impact of specific lower bounds on the success
probabilities, which leads to a strict hierarchy of classes. In particular, the classi-
cal technique of probability amplification fails for computations on infinite objects.
We also investigate the dependency on the underlying probability space. Joint work
with Rupert Hölzl and Guido Gherardi.

Measuring complexities of classes of structures.

Barbara F. Csima
University of Waterlow

How do we compare the complexities of various classes of structures? The Turing or-
dinal of a class of structures, introduced by Jockusch and Soare, is defined in terms
of the number of jumps required for coding to be possible. The back-and-forth ordi-
nal, introduced by Montalbán, is defined in terms of Σα-types. The back-and-forth
ordinal is (roughly) bounded by the Turing ordinal. We show that, if we do not re-
strict the allowable classes, the reverse inequality need not hold. Joint work with
Carrie Knoll.

Degree spectra of structures under equivalence relations∗
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Ekaterina Fokina
Kurt Gödel Research Center for Mathematical Logic

Equivalence relations reflect the idea of similarity between mathematical objects.
A large body of work in computable model theory is devoted to the study of com-
plexity of isomorphic copies of a given structure. Some work has been done also for
structures equimorphic to a given one.

For a countable structure A its degree spectrum D gSp(A ) was defined in [2] and
consists of the Turing degrees of all isomorphic copies of A . Degree spectra of struc-
tures have been actively studied since then. More recently, the authors of [1] defined
the degree spectrum of a theory T to consist of all degrees of countable models of T.
We suggest to consider the following generalisation of these notions.

Definition. The degree spectrum of a countable structure A with the universe ω

under the equivalence relation E is

DgSp(A ,E)= {deg(B) |B is E-equivalent to A }.

Then the classical degree spectrum of A is D gSp(A ,∼=), the degree spectrum of A

under isomorphism, while the degree spectra of the theory of A is D gSp(A ,≡), the
degree spectrum of A under elementary equivalence.

We consider degree spectra of structures under other equivalence relations, in partic-
ular, Σn-equivalence (the Σn-theories of structures coincide). We call D gSp(A ,≡Σn )
the Σn-spectrum of A . We study what collections of degrees are realisable as Σn-
spectra, for various n. We give several positive and negative examples for various
n ∈ω. In particular, we show that the union of two cones is never a Σ1-spectrum, but
is a Σn-spectrum for n ≥ 2. The same is true for all non-computable degrees.

This is a joint work with Pavel Semukhin and Dan Turetsky.

References.

[1] U. Andrews and J. Miller. Spectra of theories and structures. Proc. Amer. Math.
Soc., to appear.

[2] L. J. Richter. Degrees of structures. J. Symbolic Logic, 46, 723–731, 1981.

Π1
1 equivalence relations

Noam Greenberg
Victoria University

Fokina, Friedman, Harizanov, Knight, McCoy and Montalbán showed that isomor-
phism between computable structures is universal among all Σ1

1 equivalence rela-
tions on natural numbers. We show that hyperarithmetic isomorphism is universal
for Π1

1 equivalence relations. Joint work with Dan Turetsky.

Weak Lowness Notions for Kolmogrov Complexity
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Ian Herbert
National University of Singapore

The (prefix-free) Kolmogorov complexity of a finite binary string is the length of the
shortest description of the string given by some universal decoding machine. This
gives rise to some ‘standard’ lowness notions for reals: A is K-trivial if its initial
segments have the lowest possible complexity and A is low for K if using A as an
oracle does not decrease the complexity of strings by more than a constant factor.
We discuss various ways of weakening these notions and the relations between these
weakenings. Kolmogorov complexity also induces some reducibility notions that are
weaker than Turing reducibility, and we discuss the behavior of these new lowness
notions with respect to these reducibilities.

Lebesgue density and Π0
1 classes

Mushfeq Khan
University of Wisconsin

A positive density point is a real such that if it is contained in an effectively closed
(or Π0

1) set of reals, then the set has positive Lebesgue density around that real. A
density-one point is defined analogously. We investigate how these properties in-
teract with various forms of computability-theoretic strength. It was shown by Bi-
envenu, Hölzl, Miller, and Nies that if we restrict our attention to the Martin-Löf
random reals, then the positive density points are exactly the reals that do not com-
pute the halting problem. Does anything similar hold on the more general class of
positive density points?

For some classes of reals, it is easy to see that the members cannot have minimal
Turing degree. For example, if X is Martin-Löf random or if it is 1-generic, then the
sequences given by the even and odd bits of X are Turing incomparable, and hence
properly Turing below X. This is not necessarily true of a positive density point. Can
such a point be of minimal degree?

We answer these questions and others, working toward a more complete picture of
how the two density notions behave.

Measure theory and higher order arithmetic

Alexander Kreuzer
National University of Singapore

I will talk about how to lift computability results to conservation results using proof-
theoretic tools.

Let ϕ(X ) be an arithmetic formula defining the set {X : ϕ(X )} of reals. By Sacks
(1969) and Tanaka (1968) it is known that the measure of this set is also arithmetic.
We will use this to obtain from this that ACAω

0 , the higher order extension of ACA0,
plus the statement "all set have a Lebesgue measure" is Π1

2-conservative over ACA0.
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We will discuss similar result for ultrafilters, idempotent ultrafilters and iterated
Hindmann’s theorem.

References.

[1] A. P. Kreuzer. Measure theory and higher order arithmetic. arXiv:1312.1531.

On universal instances of principles in reverse mathematics

Ludovic Patey
Université Paris Diderot (VII)

Most statements of reverse mathematics are of the form

(∀X )(∃Y )Φ(X ,Y )

where Φ is an arithmetical formula. In this case, X is called an instance and any Y
such that Φ(X ,Y ) holds is called a solution.

A statement admits a universal instance U if for every instance X ,every solution
to U computes a solution to X . A few principles are known to admit a universal
instance, e.g., König’s lemma, the rainbow Ramsey’s theorem. But many others do
not have one. This is for example the case of the Ramsey’s theorem for pairs and the
ascending descending sequence principle.

We will present different proof techniques for proving the absence of universal in-
stances for ranges of principles, classifying almost the whole Zoo of Damir Dzhafarov
in terms of admitting universal instance or not.

A parallel between classical computability theory and effective definability
in abstract structures

Alexandra Soskova
Sofia University

There is a close parallel between classical computability and the effective definability
on abstract structures. For example, the Σ0

n+1 sets correspond to the sets definable
by means of computable infinitary Σn+1 formulae on a structure A. We will present
some analogues for abstract structures of Ashs reducibilities between sets of nat-
ural numbers and sequences of sets of natural numbers, given by I. Soskov in his
last paper [3]. He generalizes the method of Markers extensions for a sequence of
structures. I. Soskov demonstrates that for any sequence of structures its Mark-
ers extension codes the elements of the sequence so that the n-th structure of the
sequence appears positively at the n-th level of the definability hierarchy.

We apply these results and generalize the notion of degree spectrum with respect to
an infinite sequence of structures A in two ways as Joint spectra of A [1] and Relative
spectra of A [2]. We study the set of all lower bounds of the generalized notions in
terms of enumeration and ω-enumeration reducibility. The results of Soskov provide
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a general method given a sequence of structures to construct a structure with n-th
jump spectrum contained in the spectrum of the n-th member of the sequence.

As an application a structure with spectrum consisting of the Turing degrees which
are non-lown for all n < ω is obtained. Soskov shows also an embedding of the ω-
enumeration degrees into the Muchnik degrees generated by spectra of structures.

References.

[1] Soskova, A. A. and Soskov, I. N. Co-spectra of joint spectra of structures. Ann.
Univ. Sofia, 96, 35–44, 2004.

[2] Soskova, A. A. Relativized degree spectra. J. Logic and Computation, 17, 1215–
1234, 2007.

[3] Soskov I. N. Effective properties of Markers Extensions. J. Logic and Computa-
tion, 23, 1335–1367, 2013.

Coding a set by a sequence of structures

Stefan Vatev
Sofia University

The idea of coding a set by a sequence of structures arises naturally in computable
structure theory and can be found in a hidden form in many constructions. It was
first studied independently by Ash and Knight [1].

Let {B0,B1} be a pair of computable structures in the same relational language. We
say that the set S ⊆ω is coded by the sequence of structures {Cn}n∈ω if

Cn ∼=
{

B1 if n ∈ S,
B0 if n ∉ S.

If the sequence {Cn} is uniformly computable, we say that S is strongly coded by the
pair {B0,B1}.

Theorem 1 (Ash-Knight [1]). Fix a computable successor ordinal α. Let B0 and
B1 be computable structures in the same relational language. Moreover, let the pair
{B0,B1} be α-friendly, and B0, B1 satisfy the same infinitary Σβ sentences, for all
β<α. Then every ∆0

α set S is strongly coded by {B0,B1}.

If we have a way to distinguish B0 from B1, we will be able to extract the set S from
the sequence {Cn}n∈ω.

Corollary 1. Let α be a computable successor ordinal. Let B0 and B1 be as in
Theorem 1, but also require that there be a computable infinitary Σα sentence Φi
true in Bi, but not true in B1i, for i = 0,1. Then a set S is ∆0

α if and only if S is
strongly coded by {B0,B1}.

For a structure A = (ω; R1, . . . ,Rm), we can code every ki-ary relation Ri by a se-
quence of structures {C i

n}n∈ω. It is also easy to see that we can represent any infinite
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sequence {Cn}n∈ω as a single structure N . These observations help us obtain a jump
inversion theorem for Turing degree spectra of structures.

Corollary 2. Let α be a computable successor ordinal and let A be a structure
such that Spec(A ) ⊆ {d | 0(α) ≤ d}. Then we can build a structure N such that
Spec(A )= Specα(N ).

In what follows, we will see how by relaxing or strengthening the requirements for
the pair B0 and B1 we can get different results. We will spend some time discussing
the following theorem.

Theorem 2 (Vatev [2]). We can also obtain the result in Corollary 2 by omitting the
requirement that {B0,B1} is α-friendly.

As another application, we will show that this construction can be applied in the
study of categoricity spectra of structures. This notion, introduced in [3], is relatively
new and not well studied yet.

Proposition 1. Let α, B0, and B1 be as in Corollary 2, but with the additional
requirement that B0 and B1 are uniformly relatively ∆0

α categorical. Let A be a ∆0
α-

computable structure such that CatSpec0(α) (A ) ⊆ {d | 0(α) ≤d}. Then we can build a
structure N for A such that

CatSpec(N )= CatSpec0(α) (A ).

Using this proposition, we can give a new proof of the following result.

Theorem 3 ([3], [4]). For every computable ordinal α, 0(α) is degree of categoricity.

If time permits, we will discuss more applications of the same construction.

References.

[1] C. J. Ash, J. F. Knight. Pairs of recursive structures. Ann. Pure Appl. Logic, 46,
211–234, 1990.

[2] S. V. Vatev. Another jump inversion theorem for structures. Lecture Notes in
Computer Science, 7921, 414–424, 2013.

[3] E. B. Fokina, I. Kalimullin, and R. Miller. Degrees of categoricity of computable
structures. Arch. Math. Logic, 49, 51–67, 2010.

[4] B. F. Csima, J. N. Y. Franklin, and R. A. Shore, Degrees of categoricity and the
hyperarithmetical hierarchy. Notre Dame J. of Formal Logic, 54, 215–232, 2012.

Entropy and other subshift invariants

Linda Brown Westrick
University of California, Berkeley

A subshift is a closed, shift-invariant subset of Cantor space. Also known as sym-
bolic dynamical systems, subshifts were originally used to condense information
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from continuous dynamical systems. We discuss three subshift invariants: entropy,
Medvedev degree, and effective dimension spectrum.

The entropies of n-dimensional subshifts of finite type have been characterized by
Hochman and Meyerovitch, and the Medvedev degrees of subshifts have been char-
acterized by Miller (in one dimension) and Simpson (n-dimensional subshifts of finite
type). We extend the existing work on entropy and Medvedev degree to show that
these are independent invariants, both in general and for various natural classes of
subshifts.

The effective dimension spectrum is defined here as {dim x : x ∈ X } where X is a sub-
shift. By a result of Simpson, the effective dimension spectrum refines the entropy
as an invariant. Seeking a characterization of the effective dimension spectra of
subshifts, we discuss motivating examples and partial results.


