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How hard is it to compute an infinite descending sequence in an
ill-founded linear ordering L?

This problem reduces to the problem of computing a path on an
ill-founded subtree of N<N:

Given L, compute the tree T (L) of all finite descending
sequences in L;
Every path P on T (L) computes an infinite descending
sequence S in L.

L T (L)

PS

computable

computable
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Going in the opposite direction

Given a tree T , we can compute its Kleene-Brouwer ordering
KB(T ), defined by σ ≤KB τ iff σ extends τ or is
lexicographically below τ .
KB(T ) is ill-founded if and only if T is ill-founded.
Given a descending sequence (σi )i∈N in KB(T ),

P(n) = lim
i→∞

σi (n)

is a path on T .

T KB(T )
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limit-computable

Can we do better?
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Weihrauch reducibility: represented spaces

If each object in a space X can be “encoded” as a real, then we
can make it into a represented space, thereby transferring notions
of computability from NN to X .

Formally, a represented space is a pair (X , δ) where δ :⊆ NN → X
is a (possibly partial) surjection.

Each element of X is named by some (possibly multiple) p ∈ NN

via δ.

Examples:

NN, N, LO, Tr, Π1
1(N), Σ1

1(LO)

All of the above spaces can be represented in standard ways.
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Weihrauch reducibility: problems

Examples of problems
DS: given an ill-founded linear ordering, produce any infinite

descending sequence
CNN : given an ill-founded subtree of N<N, produce any path
lim: given a convergent sequence of reals, produce its limit

Formally, a problem f :⊆ X ⇒ Y is a (possibly partial) multivalued
function between represented spaces.

We also think of a problem as a set of instance-solution pairs:
If x ∈ dom(f ) then we say that x is an f -instance.
For each f -instance x , the set of f -solutions to x is f (x) ⊆ Y .
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Weihrauch reducibility ≤W

Definition
A problem f is Weihrauch reducible to a problem g (f ≤W g) if
there are computable functions Φ,Ψ :⊆ NN → NN such that:

if p is a name for an f -instance, then Φ(p) is a name for a
g-instance;
if p is a name for an f -instance and q is a name for a
g-solution to Φ(p), then Ψ(p, q) is a name for an f -solution
to p.

f -instance p g-instance Φ(p)

g-solution qf -solution Ψ(p, q)

Φ(·)

Ψ(p, ·)

We call Φ and Ψ forward and backward functionals respectively.
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Relationships between CNN and DS

Our first reduction shows that DS ≤W CNN .

Our second reduction is not a Weihrauch reduction from CNN to
DS because our paths are obtained by applying the limit to
descending sequences in KB(T ). Nonetheless:

Proposition
CNN ≡W lim ∗ DS.

f ∗ g is the compositional product (Brattka, Gherardi, Marcone),
which captures what can be achieved by first applying g , followed
by some computation, and then applying f .

Question (which we will answer)
Do we have CNN ≡W DS? Equivalently, does CNN ≤W DS?
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Our results: CNN 6≤W DS (and more)

We show that DS is quite weak in terms of uniform computational
strength.

Theorem (G., Pauly, Valenti)
A single-valued problem is Weihrauch reducible to DS if and only if
it is Weihrauch reducible to lim, i.e.,

sup≤W{f0 :⊆ Z → NN | f0 ≤W DS} ≡W lim.

Corollary
The following problems are not Weihrauch reducible to DS:
LPO′, ADS, lim′, UCNN , CNN .

Open question
Is KL (König’s lemma) Weihrauch reducible to DS?
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Our results: first-order part of DS

Our techniques characterize the problems which have codomain N
and are reducible to DS:
Definition
Let Π1

1-Bound :⊆ Π1
1(N) ⇒ N be the following problem:

given a Π1
1-code for a finite subset of N, produce a bound.

Theorem (G., Pauly, Valenti)
sup≤W{f0 :⊆ Z ⇒ N | f0 ≤W DS} ≡W Π1

1-Bound.

Dzhafarov, Solomon, Yokoyama (ta) were the first to define and
study the first-order part 1f of an arbitrary problem f :

1f ≡W sup≤W{f0 :⊆ Z ⇒ N | f0 ≤W f }.
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Proof that 1DS ≤W Π1
1-Bound

Suppose f :⊆ Z ⇒ N reduces to DS. Given an f -instance p, we
can find an f -solution to p as follows.

1 At stage s, we can compute a finite piece Ls of the
DS-instance defined by the forward functional.

2 List all descending sequences in Ls on which the backward
functional converges (and hence gives a potential f -solution).

3 If such descending sequences exist, we can guess an f -solution
by picking the Ls -rightmost descending sequence Fs .

4 The set of s such that Fs is undefined or not extendible is
Π1,p

1 .
5 Apply Π1

1-Bound to obtain an s such that Fs is extendible.
This yields an f -solution to p.

Hence f ≤W Π1
1-Bound.
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Π1
1-Bound and Σ1

1 choice principles

Σ1
1-CN: given a Σ1

1-code for a nonempty subset of N, produce an
element of the set.

Σ1
1-Ccof

N : given a Σ1
1-code for a cofinite subset of N, produce an

element of the set.

It is easy to see that Σ1
1-Ccof

N is Weihrauch equivalent to Π1
1-Bound.

Theorem (Angles d’Auriac, Kihara ta)

Σ̂1
1-Ccof

N <W Σ̂1
1-CN, hence Σ1

1-Ccof
N <W Σ1

1-CN.

It is easy to see that the first-order part of CNN is Σ1
1-CN, so this

theorem and our results imply that DS and CNN can be separated
by considering their first-order parts.

In fact our results imply that there is a single-valued problem with
codomain 2 which separates DS and CNN , namely LPO′.
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More about Σ̂1
1-CN

Kihara, Marcone, Pauly asked if Σ̂1
1-CN <W CNN .

Theorem (Angles d’Auriac, Kihara ta)

Σ̂1
1-CN <W CNN . In fact ATR2 6≤W Σ̂1

1-CN.

AK proved the above separation using a pair of inseparable Π1
1 sets.

We will extend their techniques to prove a stronger result about a
strengthening of DS.

Definition (G.)
Let ATR2 : LO ⇒ NN be the following problem: given a linear
ordering L, produce either an infinite descending sequence in L
or a jump hierarchy on L (with a bit indicating which type of
solution we produce).

In fact it suffices to consider ATR2 restricted to computable linear
orderings.
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ATR2 and a strengthening of DS

Our earlier results imply that ATR2 6≤W DS, but much more is true:

Definition
Let Σ1

1-DS :⊆ Σ1
1(LO) ⇒ NN be the following problem: given a

Σ1
1-code for an ill-founded linear ordering, produce an infinite

descending sequence.

Theorem (G., Pauly, Valenti)
ATR2 6≤W Σ1

1-DS, hence Σ1
1-DS <W CNN .

This means that CNN does not reduce to DS even if we allow the
forward functional to be Σ1

1 rather than computable.

On the other hand, we saw earlier that if we allow the backward
functional to be limit-computable, then CNN reduces to DS.
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ATR2 and inseparable Π1
1 sets

We can think of ATR2 as a “union” of DS and
JH: given a linear ordering which supports a jump hierarchy,

produce a jump hierarchy.

It is well known that the set of indices of ill-founded linear
orderings is Σ1

1-complete.

Harrington (unpublished) showed that the set of indices of linear
orderings which support a jump hierarchy is also Σ1

1-complete.

Theorem (G., generalizing Harrington’s proof)
Any Σ1

1 set which separates wf and hds is Σ1
1-complete.

(wf and hds are the set of indices for well-founded linear orderings and
linear orderings with hyp descending sequences respectively.)

This generalizes Harrington’s result because if a computable linear
ordering has a hyp descending sequence, then it does not support a
jump hierarchy (Friedman).
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ATR2 and inseparable Π1
1 sets

Theorem (G., generalizing Harrington’s proof)
Any Σ1

1 set which separates wf and hds is Σ1
1-complete.

(wf and hds are the set of indices for well-founded linear orderings and
linear orderings with hyp descending sequences respectively.)

By Σ1
1-separation,

Corollary
wf and hds cannot be separated by disjoint Σ1

1 sets.

Angles d’Auriac, Kihara used the corollary to prove that
ATR2 6≤W Σ̂1

1-CN.

We will use the corollary to prove that ATR2 6≤W Σ1
1-DS.
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Proof that ATR2 6≤W Σ1
1-DS (G., Pauly, Valenti)

Suppose that ATR2 ≤W Σ1
1-DS. For each computable linear

ordering Le , the forward functional produces a Σ1
1-code Φ(Le) for

an ill-founded linear ordering.
For the same e, the backward functional may produce either
descending sequences in Le or jump hierarchies on Le , depending
on which descending sequence in Σ1

1-DS(Φ(Le)) is given. However,
descending sequences are sufficiently homogeneous so

Lemma
For each e, either DS(Le) or JH(Le) is Muchnik reducible to
Σ1

1-DS(Φ(Le)).

Then we have disjoint Σ1
1 sets which separate wf and hds:

wf ⊆ {e ∈ N : DS(Le) is not Muchnik reducible to Σ1
1-DS(Φ(Le))}

hds ⊆ {e ∈ N : JH(Le) is not Muchnik reducible to Σ1
1-DS(Φ(Le))}.

This contradicts the corollary on the previous slide. Thank you!
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